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ABSTRACT 

Line width roughness (LWR) has been identified as a potential source of uncertainty in scatterometry measurements, and 
characterizing its effect is required to improve the method’s accuracy and to make measurements traceable. In this work, 
we extend previous work by using rigorous coupled wave (RCW) analysis on two-dimensionally periodic structures to 
examine the effects of LWR. We compare the results with simpler models relying upon a number of effective medium 
approximations. We find that the effective medium approximations yield an approximate order of magnitude indicator of 
the effect, but that the quantitative agreement may not be good enough to include in scatterometry models. 
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1. INTRODUCTION 
Optical scatterometry is becoming an increasingly important tool for dimensional semiconductor metrology. Line 

width roughness (LWR) has been identified as a potentially significant source of uncertainty, and characterizing its effect 
on scatterometry measurements is required to improve the accuracy and to make the method traceable [1, 2]. 

Previous work on line edge roughness and line width roughness has examined scattering from gratings with long 
wavelength roughness, where the characteristic correlation length of the roughness is greater than the period of the 
grating and the wavelength of the light. Boher and Petit [3] used optical Fourier transform scatterometry to examine the 
scattering from structures that exhibited edge roughness. Since this technique compares signals from multiple diffraction 
orders, it is only useful for measuring roughness with periods that are greater than the probe wavelength. Germer [4] 
simulated line variations by applying rigorous coupled-wave (RCW) analysis to one-dimensionally periodic structures 
containing multiple random lines and compared the average of these results to an approximation, whereby the signature 
was calculated by averaging the reflected field over a distribution of linewidths. He achieved reasonable agreement for 
long period roughness. 

The effect of short period LWR on optical scatterometry signals could be simulated using a rigorous coupled wave 
analysis for a two-dimensionally periodic structure (2D RCW). However, the computational expense needed to model 
edge roughness in this way can be prohibitive. For example, if one retains ±10 orders in each of the two dimensions of 
the field expansions, the calculation is about 9000 times slower than if one retained ±10 orders in just the grating 
direction using RCW for one-dimensionally periodic structures (1D RCW). An approximation that enables an estimate of 
the effects of LWR, without requiring a full 2D RCW simulation, would allow such effects to be accounted for in 
scatterometry measurements. 

In this paper, we use a 2D RCW analysis to examine the effects of LWR having characteristic correlation lengths 
that are less than the grating period and compare the results to those obtained using various effective medium theories.   

2. APPROACH 
In this paper, we calculate the reflection of a rough periodic grating with full three-dimensional solutions to 

Maxwell’s equations and compare the results to effective medium approximations that only require a two-dimensional 
solution. The two-dimensional solutions rely upon RCW analysis of one-dimensionally periodic gratings [5-8]. The 



 

 

software for the RCW analysis is available online [9]. The three-dimensional solutions rely upon RCW analysis of two-
dimensionally periodic gratings [10].  

We studied a nominal grating consisting of simple lines with vertical sidewalls shown in Fig. 1(a). We varied the 
nominal line material, width w, height h, and the period Px  of the grating, but always assumed a silicon substrate. To 
simulate roughness, we considered the structure shown in Fig. 1(b), where we added a square wave modulation to the 
sidewall position. The sides of the line were modulated in opposite directions, corresponding to what is often referred to 
as line-width roughness (LWR). We kept the mean line width constant, and the duty cycle of the modulation fixed at 
50 %. The period of the modulation, Py, and the peak-to-peak amplitude, a, were also varied. We define q = 2a/Py as the 
aspect ratio of the roughness. We performed the three-dimensional calculations on these structures. 

To model the roughness, we considered the structure shown in Fig. 1(c), where we approximate the modulated 
regions as effective medium layers. The structure shown in Fig. 1(c) can be solved with a two-dimensional solution to 
Maxwell’s equations, at a significant computational cost savings. 
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Figure 1. Examples the index profiles within a one period by one period cell used in the simulations. The figures show (a) 
the nominal profile, (b) a 2D periodic profile used to directly calculate the effect of LWR using a 2D RCW simulation, and 
(c) a 1D periodic profile used to approximate the effect of the LWR with an effective medium layer. Profiles with a large 
peak to valley roughness are shown for clarity. Much smaller roughness amplitudes were used in the simulations. The dark 
areas correspond to areas containing the grating material, the gray area corresponds to the effective medium layer, and the 
light areas correspond to areas containing the fill material.   

In RCW analysis, the electric and magnetic fields are each expanded in a Floquet series. RCW models converge on 
an exact solution when the number of Floquet expansion orders (G) that are retained for the calculation approaches 
infinity. However, the number of operations that are needed for the computation is proportional to G 3. In order to make 
the computation tractable, the number of orders must be limited. While we can perform more accurate simulations for the 
simpler, one-dimensionally periodic gratings, we chose to use the same number of orders in each dimension for both the 
one-dimensionally and the two-dimensionally periodic gratings. We chose to truncate the expansion to ±10 orders in 
each dimension, corresponding to a total of 21 orders for the one-dimensionally periodic gratings and 441 orders for the 
two-dimensionally periodic gratings.   

The optical properties of composite materials can be approximated by a uniform effective medium when the length 
scales associated with the local variations in permittivity are small compared to the wavelength in the media. The 
reflection and transmission coefficients of a rough surface are often calculated by replacing the rough interface by a thin 



 

 

film having a thickness related to the amplitude of the roughness and a permittivity derived from an appropriate effective 
medium approximation (EMA). In a similar manner, we hope to be able to use an EMA to approximate the effects of line 
width roughness.  In this section, we describe two families of EMAs, which we considered for this application. 

The first EMA type starts with a relationship, derived from the Clausius-Mossotti equation that has been generalized 
using the expression for the polarizability for ellipsoidal inclusions [11], 
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where effε  is the effective medium permittivity, 0ε  is the permittivity of the host medium, and iε  and if  are the 
permittivities and volume fractions of each of the N inclusion materials. The geometrical factor L depends upon the 
shape of the ellipsoidal inclusions and the direction of the electric field: for spheres, 1/ 3x y zL L L= = = , for highly 
prolate ellipsoids (needles) aligned along the z direction, 1/ 2x yL L= =  and 0zL = , and for highly oblate ellipsoids 
(plates) aligned along the y direction 0x zL L= =  and 1yL = . The Bruggeman model puts all of the constituent materials 
on an equal footing. The host permittivity 0ε  is the same as the effective medium permittivity effε , and the volume 
fractions of the constituent materials sum to one. Thus, for N = 2, we can solve Eq. (1) for the effective permittivity, 
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The sign is chosen to ensure a sensible result. For 0L = , the result simplifies to  

 eff 1 1 2 2f fε ε ε= +  (3) 

while for 1L = , the result simplifies to  
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The result for spheres ( 1/ 3L =  for all directions) is the common isotropic Bruggeman EMA (IBEMA). The isotropic 
Bruggeman effective medium approximation is used extensively to model interfacial roughness in ellipsometry 
measurements of thin film stacks [12-14]. However, an anisotropic model might be better for modeling edge roughness 
since this type of roughness tends to have a preferred orientation with respect to the grating vector. The Bruggeman 
effective medium approximation can be made anisotropic by allowing different geometrical factors for two or more 
directions in Eq. (2). One reasonable approach for LWR is to consider an effective medium layer made up of needles 
aligned along the z-direction ( 1/ 2x yL L= =  and 0zL = ). We will refer to this model as the anisotropic Bruggeman 
EMA (ABEMA).  

Another approach is to consider the roughness to be made up of plates aligned in the y direction ( 0xL = , 1yL =  
and 0zL = ). We will refer to this second model as the form birefringence EMA (FBEMA), because it is equivalent to the 
form birefringence model for a sub-wavelength lamellar grating derived in Born and Wolf [15] by considering the 
continuity of the electric field within a regular assembly of parallel plates. In this case, we assume that the composite 
material is stratified, with layers having thickness very small compared to the wavelength and alternating between the 
two materials. To match the boundary conditions at the interfaces, we require that the volume-mean electric field be 
constant when the electric field is parallel to the layers and that the volume-mean electric displacement be constant when 
the electric field is perpendicular to the layers. Using these arguments, we find that the effective permittivities yield the 
same results as the Bruggeman EMA for plates with normals aligned along the y direction, given by Eqs. (3) and (4) 
above, respectively. These results are also equivalent to the results obtained by Yariv and Yeh [16] by neglecting higher 
order terms in a series expansion in their expression for the dispersion relationship of Bloch waves in periodic media, to 
the results obtained by Southwell [17] in analogy to the dispersion relationship for periodic thin films, and to the results 
obtained by Rytov [18] in considering an approximation for multiple scattering in a stratified media.  



 

 

Figure 2 shows the effective optical constants n and k as functions of composition for the different EMAs for 
mixtures of vacuum and silicon. We see that we can obtain a wide range of effective indices and that there is significant 
birefringence in all but the IBEMA case.  
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Figure 2. Optical constants, n and k, for the effective medium approximations described in the text. The components are 
assumed to be silicon and vacuum, evaluated at 633 nm 

Form birefringence has been suggested in the past for modeling line edge roughness [19]. However, two important 
assumptions were made in deriving the expressions for form birefringence, Eqs. (3) and (4): (a) the period of the grating 
is small compared with the wavelength of the incident light, and (b) the amplitude of the roughness is large compared to 
its period. These conditions imply high aspect ratio roughness, i.e. q >> 1, a condition that would not be expected to 
occur often for LWR. 

 

 

3. RESULTS 
Figure 3 shows the predicted angle-resolved reflectance for a grating, consisting of 100 nm wide, 200 nm high 

silicon lines with a pitch of 200 nm on a silicon substrate, in air, probed with a wavelength of 633 nm. The sidewalls of 
the lines are vertical. The grating is oriented such that the grating vector lies in the plane of incidence (classical 
mounting). The electric field for s-polarization (often called transverse-electric or TE polarization) and the magnetic field 
for p-polarization (often called transverse-magnetic or TM polarization) are normal to the grating vector and parallel to 
the lines.  

When we apply small amounts of roughness to this grating, we will be perturbing these reflectance curves by a small 
amount. Thus, the effects of line width roughness on the signal are best observed by showing the differences between 
signals calculated for rough gratings and those calculated from the nominal, unperturbed grating. Figure 4 shows these 
reflectance differences calculated using the 2D RCW theory applied to LWR with a period of Py = 10 nm and amplitudes 
a between 1 nm and 5 nm. The reflectance differences are larger for some incident angles than for others, but generally 



 

 

increase, as expected, with roughness amplitude. For this particular grating, the p-polarized reflectance is much less 
sensitive to the roughness than the s-polarized reflectance. Graphs of the reflectance differences calculated using the 
various effective medium models show similar behavior.  
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Figure 3. Reflectance for the nominal grating described in the text as a function of incident angle for (solid line) s-
polarization and (dashed line) p-polarization.  
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Figure 4. Difference between reflectance calculated for the nominal grating (with no roughness) and gratings with various 
roughness amplitudes a from 0 nm to 5 nm. The curves are calculated for gratings with a 10 nm period roughness for (a) s-
polarization and (b) p-polarization. Note the difference in scales. 

We can visually assess the effectiveness of an EMA model by graphing reflectance differences, ΔR, calculated using 
the EMA model against those calculated using the 2D RCW model. Figure 5 shows this comparison for each polarization 
and for the IBEMA, the FBEMA, and the ABEMA for roughness amplitude a = 10 nm and roughness period Py = 
10 nm. If an approximate EMA model were valid, then the relationship between the EMA model and the 2D RCW 
model should be a straight line with unit slope. It is clear from figure 5 that none of the EMA models match the 2D RCW 
calculations perfectly, but that some are better than others. For example, the isotropic Bruggeman model is particularly 
poor. For this grating, the anisotropic Bruggeman model seems to visually agree best with the 2D RCW calculations. 
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Figure 5. The reflectance difference calculated for the three effective medium approximations as a function of that 
calculated using the 2D RCW model. Each data point corresponds to a different angle of incidence. For clarity, only results 
for a = 10 nm and Py = 10 nm are shown. The best fit line is included with each graph 

The slope of the best fit line, b, and the linear correlation coefficient, r, of these plots [20] can be used to quantify 
the degree of suitability of each model. A linear correlation coefficient of one indicates a good fit. A slope of one 
indicates that there is a one to one correspondence between the roughness amplitude and the thickness of the effective 
medium layer that best approximates the roughness. The model could still be useful if the slope is not one, but the slope 
should be constant over the relevant range of roughness amplitudes and periods. Figure 6 shows a comparison of the 
linear correlation coefficient for the FBEMA and ABEMA as a function of the roughness period and aspect ratio.  

Figure 6(a) indicates that the correlation coefficient reaches stable values for roughness periods below 
approximately 60 nm (approximately one-tenth of the incident wavelength) for both the FBEMA and the ABEMA. The 
slopes of the lines also approach unity, but more slowly for the FBEMA for the s-polarization, in this case.  Figures 6(a) 
and 6(b) are plotted for a = 10 nm. The reason for displaying the results for such a large roughness values can be seen by 
examining Figs. 6(c) and 6(d); the models begin to break down when the roughness amplitude reaches approximately 
half of the roughness period.  

4. DISCUSSION 
The isotropic Brugemman EMA was generally very poor, but the form birefringence and the anisotropic Bruggeman 

EMAs were each effective to various degrees for different grating cases that we studied. However, we were unable to 
find a single EMA that could effectively model LWR for both polarizations over a wide range of roughness periods and 
amplitudes and grating geometries. In the future, we hope to develop heuristics that can be used to decide which model 
would be most appropriate for a specific grating, the roughness type, and the roughness amplitude.  

The ABEMA and FBEMA models begin to break down for small aspect ratios (q less than about 0.5). This 
observation is consistent with the assumption made in the derivation of the FBEMA that the lateral extent of the plates 
(amplitude of the roughness) is large compared with the distance between the plates. This condition would require 
roughness slopes large compared to the mean line edge, a condition not expected to occur in microlithography. In such 



 

 

cases, a perturbation method might be more appropriate, but not as simple to implement or as computationally efficient 
as an EMA.  
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Figure 6. Linear correlation coefficients (in a and c) and best fit slopes (in b and d) for linear fits of reflectance differences 
calculated using an EMA model versus those using 2D RCW. Graphs (a) and (b) show the relationships with respect to 
roughness period for a = 10 nm. Graphs (c) and (d) show the relationships as a function of aspect ratio q for a roughness 
period Py = 10 nm. The curves correspond to (solid lines) FBEMA, s-polarization, (dashed lines) FBEMA, p-polarization, 
(solid dots) ABEMA, s-polarization, and (circles) ABEMA, p-polarization. Inset cartoons are meant to loosely represent the 
relative dimensions of the roughness profile. 

For simplicity, we chose to limit this discussion to square-wave modulations of the line edge. Results for LWR with 
a sinusoidal profile show a similar dependence on the roughness period and aspect ratio for both the FBEMA and 
ABEMA. Notably missing from this work are the effects of random roughness. Random roughness is much more likely 
to occur naturally and may behave differently than square-wave roughness. The effects of random roughness are not 
expected to be dramatically different, but are more difficult to model, because of the longer periods Py required, the need 
to average over realizations of the random line edge function, and the different power spectral density functions that need 
to be considered. 

 

 

 

 



 

 

5. CONCLUSIONS 
The ability to use an effective medium approximation to model LWR using a RCW algorithm for one-dimensionally 

periodic structure can significantly reduce the computation time needed to model LWR. A comparison of the change of 
the reflectance function of a rigorous model of a grating with roughness to the change predicted by a model using an 
effective medium approximation for the LWR indicates that both the FBEMA and ABEMA are good candidates for 
modeling LWR when the period of the roughness is small (less than one-tenth of the incident wavelength) and the aspect 
ratio of the roughness is larger than 2. These constraints limit the usefulness of these EMAs for modeling LWR for 
optical scatterometry measurements. However, while the correlations are not perfect, they do provide rough order of 
magnitude estimates of the effects of LWR on optical scatterometry signals that can be used to estimate the errors in 
optical scatterometry measurements that might result from LWR. 
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